
Computer Science

£>-

Compiler and Hardware Support for Automatic
Instruction Prefetching: A Cooperative Approach

Todd C. Mowry Chi-Keung Lukf

June 1998
CMU-CS-98-140

HPIIIHII'lWMjWMI-*« I.-*» ft-

Mq&xmS -■•'.■a: -ffi-b'k !'*!'3aM&

i.iitiigi)i'»i

:'M".

<-*!

i>o

%0^'

%:.:,:V00

Compiler and Hardware Support for Automatic
Instruction Prefetching: A Cooperative Approach

Todd C. Mowry Chi-Keung Luk*

June 1998
CMU-CS-98-140

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

'Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, M5S 3G4.

Abstract

Instruction cache miss latency is becoming an increasingly important performance bottleneck, espe-
cially for commercial applications. Although instruction prefetching is an attractive technique for
tolerating this latency, we find that existing prefetching schemes are insufficient for modern super-
scalar processors since they fail to issue prefetches early enough (particularly for non-sequential ac-
cesses). To overcome these limitations, we propose a new instruction prefetching technique whereby
the hardware and software cooperate to hide the latency as follows. The hardware performs aggres-
sive sequential prefetching combined with a novel prefetch filtering mechanism to allow it to get far
ahead without polluting the cache. To hide the latency of non-sequential accesses, we propose and
implement a novel compiler algorithm which automatically inserts instruction-prefetch instructions
into the executable to prefetch the targets of control transfers far enough in advance. Our experi-
mental results demonstrate that this new approach results in speedups ranging from 9.4% to 18.5%
(13.3% on average) over the original execution time on an out-of-order superscalar processor, which
is more than double the average speedup of the best existing schemes (6.5%). This is accomplished
by hiding an average of 71% of the original instruction stall time, compared with only 36% for the
best existing schemes. We find that both the prefetch filtering and compiler-inserted prefetching
components of our design are essential and complementary, that the compiler can limit the code
expansion to less than 10% on average, and that our scheme is robust with respect to variations in
miss latency and bandwidth.

Todd C Mowry is partially supported by a Faculty Development Award from IBM. Chi-Keung Luk is
partially supported by a Canadian Commonwealth Fellowship.

Keywords: B.3.2 Cache Memories, C.4 Performance of Systems (Measurement Techniques, Per-
formance Attributes), D.3.4 Compilers

1 Introduction

Memory latency is a key performance bottleneck in modern microprocessor-based systems. The
relative importance of memory latency is expected to increase as the gap between processor and
memory speeds continues to grow, and as wider-issue processors increase the effective performance
penalty of each cycle of latency. While techniques for coping with data access latency have received
considerable attention, it is also important to address the latency of fetching instructions. Although
instruction cache hierarchies are an essential first step toward coping with this problem, they are
not a complete solution. For example, a study conducted by Maynard et al. [7] demonstrates that
many commercial applications suffer from relatively large instruction cache miss rates (e.g., over
20% in an 8KB cache) due to their large instruction footprints and poor instruction localities. To
further tolerate this latency, one attractive technique is to automatically prefetch instructions into
the cache before they are needed.

1.1 Previous Work on Instruction Prefetching

There has been a long history of research on instruction prefetching. We will begin by discussing and
then quantitatively evaluating four of the most promising techniques that have been proposed to
date, all of which are purely hardware-based: next-N-line prefetching [10, 11], target-line prefetch-
ing [12], wrong-path prefetching [8], and Markov prefetching [3].

Before we begin our discussion, we briefly introduce some prefetching terminology. The coverage
factor is the fraction of original cache misses that are prefetched. A prefetch is unnecessary if the line
is already in the cache (or is currently being fetched), and is useless if it brings a line into the cache
which will not be used before it is displaced. An ideal prefetching scheme would provide a coverage
factor of 100% and would generate no unnecessary or useless prefetches. In addition, the timeliness
of when prefetches are launched is also crucial. The prefetching distance is the elapsed time between
when the prefetch is initiated and when the prefetched instruction is used. The prefetching distance
should be large enough to fully hide the cache miss latency, but not so large that the line is likely
to be displaced by other accesses before it can be used (i.e. a useless prefetch).

As its name implies, the idea behind next-N-line prefetching [10, 11] is to prefetch the N se-
quential lines following the one currently being fetched by the CPU. A larger value of N tends to
increase the prefetching distance, but also increases the likelihood of polluting the cache with useless
prefetches. The optimal value of N depends on the line size, the cache size, and the behavior of
the application itself. To increase the likelihood that these prefetched sequential lines will be used,
the hardware can postpone launching a prefetch until the current instruction falls within a specified
distance (called the fetch-ahead distance) of the end of its line [12]. Next-JV-line prefetching captures
sequential execution as well as control transfers where the target falls within the next N lines. It is
usually included as part of other more complex instruction prefetching schemes, and based on our
experiments, it accounts for most of the performance benefit of these schemes.

One limitation of next-TV-line prefetching is that it does not prefetch control transfer targets
which do not fall within the TV fall-through lines. To address this limitation, Smith and Hsu [12]
proposed target-line prefetching which uses a prediction table to record the address of the line which
most recently followed a given instruction line, thus enabling hardware to prefetch targets whenever
an entry is found in this table. They observed that combining target-line prefetching with next-1-line
prefetching produced significantly better results than either technique alone.

Rather than relying on a history table to predict likely target addresses, Pierce and Mudge [8]
proposed a scheme called wrong-path prefetching which combines next-TV-line prefetching with always
prefetching the target of control transfers with static target addresses (including procedure calls,
conditional and unconditional branches). Hence for conditional branches, both the target and fall-
through lines will always be prefetched. However, since target addresses cannot be determine early,
this scheme only outperforms next-TV-line prefetching when a conditional branch is initially untaken
but later taken (assuming that enough time has passed in between to hide the latency of fetching
the target line, but not so much time that the line has been displaced). Their results indicated that
wrong-path prefetching performed slightly better than next-1-line prefetching on average.

Table 1: Parameters used in the evaluation of existing instruction prefetching techniques.

Technique
of Sequential

Lines Prefetched
Target Prefetching Parameters

of Targ ets Table Size Table Indexing Method

Next-7V-Line N = 2, 4, 8 0 0 N/A
Target-Line 2 1 64 entries direct-mapped with tags
Wrong-Path 2 1 0 N/A

Markov 2 2 512 KB direct-mapped with tags

Joseph and Grunwald [3] proposed Markov prefetching which is applicable to both instruction
and data cache misses. This mechanism correlates the current cache miss address with the next miss
address and stores this information in a miss-address prediction table using the current miss address
as the index. Multiple predicted addresses can be associated with a given miss address. Upon a
cache miss, prefetches are issued for these predicted addresses. The Joseph and Grunwald study
focused primarily on data cache misses, and did not compare Markov prefetching with techniques
designed specifically for prefetching instructions.

Finally, we note that while a previous study by Xia and Torrellas [13] considered instruction
prefetching for codes where the layout has already been optimized using profiling information, we
focus only on techniques which do not require changes to the instruction layout in this study.

1.1.1 Performance of Existing Instruction Prefetching Techniques

To quantify the performance benefits and limitations of the four prefetching techniques described
above, we implemented each of them within a detailed, cycle-by-cycle simulator which models an
out-of-order four-issue superscalar processor based on the MIPS R10000 [14]. We model a two-level
cache hierarchy with split 32 KB, two-way set-associative primary instruction and data caches and
a unified 1 MB, four-way set-associative secondary cache. Both levels use 32 byte lines. The penalty
of a primary cache miss that hits in the secondary cache is at least 12 cycles, and the total penalty of
a miss that goes all the way to memory is at least 75 cycles (plus any delays due to contention, which
is modeled in detail). To provide better support for instruction prefetching, we further enhanced the
primary instruction cache relative to the R10000 as follows: we divide it into four separate banks,
and we add an eight-entry victim cache [4] and a 16-entry prefetch buffer [3]. Further details on our
experimental framework will be presented later in Section 5.

Table 1 summarizes the parameters used throughout our experiments for each of the prefetching
schemes. These parameters were chosen through experimentation in an effort to maximize the
performance of each scheme. All schemes effectively include next-2-line prefetching.1 We do not
use the fetch-ahead distance mechanism [12] to throttle back prefetching. When a target is to be
prefetched, we prefetch two consecutive lines starting at the target address.

Figure 1 shows the performance impact of each prefetching scheme on a collection of seven
non-numeric applications (which are described in more detail later in Section 5). We show three
different versions of next-JV-line prefetching (where N = 2, 4, and 8) in Figure 1, along with the
original case without prefetching (O) and the case with a perfect instruction cache (P). Each bar
represents execution time normalized to the case without prefetching, and is broken down into three
categories explaining what happened during all potential graduation slots.2 The bottom section
(Busy) is the number of slots when instructions actually graduate, the top section (I-Miss Stall)
is any non-graduating slots that would not occur with a perfect instruction cache, and the middle
section (Other Stall) is all other slots where instructions do not graduate.

We observe from Figure 1 that despite significant differences in complexity and hardware cost,
the various prefetching schemes offer remarkably similar performance, with no single scheme clearly

1 We added next-2-Iine prefetching to Markov prefetching (despite the fact that this was not in the original de-
sign [3]) because this provides better performance than Markov prefetching alone.

2 The number of graduation slots is the issue width (4 in this case) multiplied by the number of cycles. We focus
on graduation rather than issue slots to avoid counting speculative operations that are squashed.

0) 120
E

■~ 100
c
o

'-§ 80
ü
0
X 60 UJ

■Ü
g 40
75
E 20
o

h>9595^9796 1°°
10°989899989898 1£°

l-Miss Stall
Other Stall
Busy

100 „_ 100,
TJ96952Z969696 ""' lllllll limn H«n Ilillli liiiiii

100

1919090919090

min»

ON2N4NSTWMP 0 N2N4NS T W M P 0 N2N4NS T W M P 0 N2N4N8 T W M P 0 N2N4NS T W M P O N2N4NB T W M P 0 N2N4N« T W M P

gcc perl porky postgres skweel tcl vortex

Figure 1: Performance of existing instruction prefetching techniques (O = original, Na; = next-«-line
prefetching, T = target-line prefetching, W = wrong-path prefetching, M = Markov prefetching,
P = perfect instruction cache).

dominating. Perhaps surprisingly, the best performance is achieved by either next-4-line or next-8-
line prefetching in all cases except perl; even in perl, next-4-line prefetching is still within 1% of
the best case. The reason for this is that the bulk of the benefit offered by each of these schemes is
due to prefetching sequential accesses.

Finally, we see in Figure 1 that these schemes are hiding no more than half of the stall time
due to instruction cache misses. Through a detailed analysis of why these schemes are not more
successful (further details are presented later in Section 6.1), we observe that although the coverage
is generally quite high, the real problem is the timeliness of the prefetches—i.e. prefetches are not
being launched early enough to hide the latency. Hence there is significant room for improvement
over these existing schemes.

1.2 Our Solution

To hide instruction cache miss latency more effectively in modern microprocessors, we propose and
evaluate a new fully-automatic instruction prefetching scheme whereby the compiler and the hard-
ware cooperate to launch prefetches earlier (therefore hiding more latency) while at the same time
maintaining high coverage and actually reducing the impact of useless prefetches relative to today's
schemes. Our approach involves two novel components. First, to enable more aggressive sequential
prefetching without polluting the cache with useless prefetches, we introduce a new prefetch filtering
hardware mechanism. Second, to enable more effective prefetching- of non-sequential accesses, we
introduce a novel compiler algorithm which inserts explicit instruction-prefetch instructions into the
executable to prefetch the targets of control transfers far enough in advance. Our experimental
results demonstrate that our scheme provides significant performance improvements over existing
schemes, eliminating roughly 50% or more of the latency that had remained with the best existing
scheme.

This paper is organized as follows. We begin in Section 2 with an overview of our approach, and
then present further details on the architectural and compiler support in Sections 3 and 4. Sections 5
and 6 present our experimental methodology and our experimental results, and finally we conclude
in Section 7.

2 Cooperative Instruction Prefetching

We begin this section with a high-level overview of how our prefetching scheme works. To make our
approach concrete, we also present some examples illustrating how prefetches are inserted.

2.1 Overview of the Prefetching Algorithm

As we mentioned earlier, the key challenge in designing a better instruction prefetching scheme is
to be able to launch prefetches earlier—i.e. to achieve a larger prefetching distance. Let us consider
the sequential and non-sequential portions of instruction streams separately.

2.1.1 Prefetching Sequential Accesses

Since the addresses within sequential access patterns are trivial to predict, they are well-suited to a
purely hardware-based mechanism such as next-TV-line prefetching. To get far enough ahead to fully
hide the latency, we would like to choose a fairly large value for N (e.g., N = 8 in our experiments).
However, the problem with this is that larger values of N increase the probability of overshooting
the end of the sequence and polluting the cache with useless prefetches. For example, next-8-line
prefetching performs worse than next-4-line prefetching for four cases in Figure 1 (perl, porky,
postgres, and skweel) due to this effect.

The ideal solution would be to prefetch ahead aggressively (i.e. with a large N) but to stop once
the end of the sequence is reached. Xia and Torrellas [13] proposed a mechanism for doing this which
involves having software explicitly mark the likely end of a sequence with a special bit. In contrast,
we achieve a similar effect using a more general prefetch filtering mechanism which automatically
detects and discards useless prefetches before they have a chance to pollute the instruction cache.
We will explain how the prefetch filter works in detail later in Section 3.3.1, but the basic idea is to
use two-bit saturating counters stored in the secondary cache tags to dynamically detect cases where
lines have been repeatedly prefetched into the primary instruction cache but were not accessed before
they were displaced (i.e. useless prefetches). When prefetches for such lines subsequently arrive at
the secondary cache, they are simply dropped. One advantage of our approach is that it adapts to
the dynamic branching behavior of the program, rather than relying on static predictions of likely
control flow paths. In addition, our filtering mechanism is equally applicable to non-sequential as
well as sequential prefetches.

2.1.2 Prefetching Non-Sequential Accesses

In contrast with sequential access patterns, purely hardware-based prefetching schemes are far less
successful at prefetching non-sequential instruction accesses early enough. Wrong-path prefetching
does not attempt to predict the target address of a given branch early, but instead hopes that
the same branch will be revisited sometime in the not-too-distant future with a different branch
outcome. Both target-line and Markov prefetching rely on building up history tables to predict
addresses to prefetch along control targets. However, if a control transfer is encountered for the
first time or if its entry has been displaced from the finite history table, then its target will not be
prefetched.3 Perhaps more importantly, even if a valid entry is found in the history table, it is often
too late to fully hide the latency of prefetching the target since the processor is already accessing
the line containing the branch.

To overcome these limitations, we rely on software rather than hardware to launch non-sequential
instruction prefetches early enough. To avoid placing any burden on the programmer, we use the
compiler to insert these new instruction-prefetching instructions automatically. As we describe
in further detail later in Section 4, our compiler algorithm moves prefetches back by a specified
prefetch-scheduling distance while being careful not to insert prefetches that would be redundant
with either next-TV-line prefetching or other software instruction prefetches. Since many control
transfers within procedures have targets within the N lines covered by our next-TV-line prefetcher,
the bulk of the instructions inserted by our compiler algorithm are for prefetching across proce-
dure boundaries. Hence, although it is an oversimplification, one could think of our scheme as
being primarily hardware-based for intraprocedural prefetching, and primarily software-based for
interprocedural prefetching.

3 Note that although our prefetch filtering mechanism can also potentially suffer from the limitations of learning
within a finite table, we find that it is far more important to prefetch target addresses early enough rather than
filtering out all useless prefetches.

(a) Prefetching of static addresses
mainQ

1000:;

1060::

1140::

1160::

1400: i

mainQ
(b) Prefetching of return addresses

1000.-:
1004::

toE.—

prefetch
address = 3204

(c) Prefetching of indirect-jump target addresses
main() indirect-target table

• : prefetch the
three addresses pM 8192

8088:
8192::

Id R, 10[SP]
jrR

1 1 1
2 2

8192 2052|1524|7596|
2 •

1 1 1
addresses of predictedVtarget addresses
indirect jumps

Figure 2: Examples of prefetch insertion for different types of target addresses, (pf _d = prefetch a
direct address, pf _r = prefetch a return address, pf _i = prefetch an indirect-jump target address.)

While direct control transfers (i.e. ones where the target address is statically known) are handled
in a straightforward way by our algorithm, indirect jumps require some additional support in order
for software to generate the target addresses early. We consider two separate cases of indirect jumps:
procedure returns, and all other indirect jumps. Since procedure return addresses can be easily
predicted through the use of a return address stack [5], we simply use a special prefetch instruction
which implicitly uses the top of the return address stack as its argument.4 To predict the target
addresses of other indirect jumps, we use a hardware structure called an indirect-target table which
records past target addresses of individual indirect jump instructions, and which is indexed using
the instruction addresses of indirect jumps themselves. A prefetch instruction designed to prefetch
the target of an indirect jump i conceptually stores the instruction address of i, which is then used
to index the indirect-target table to retrieve the actual target addresses to prefetch. (Note that an
indirect-target table is considerably smaller than the tables used by either target-line or Markov
prefetching since it only contains entries for active indirect jumps other than procedure returns.)

While the advantage of software-controlled instruction prefetching is that it gives us greater
control over issuing prefetches early, the potential drawbacks are that it increases the code size
and effectively reduces the instruction fetch bandwidth (since the prefetch instructions themselves
consume part of the instruction stream). Fortunately, our experimental results demonstrate that
this advantage outweighs any disadvantages.

4 Although one could also imagine using the return address register as an explicit argument to the prefetch instruc-
tion, this may complicate the processor by creating a new datapath from the register file to the instruction fetcher.
In general, we would like to avoid instruction-prefetch instructions which have register arguments.

2.2 Examples of Prefetch Insertion

To make our discussion more concrete, Figure 2 contains three examples of how different types of
prefetches are inserted. We assume the following in these examples: a cache line is 32 bytes long;
an instruction is four bytes long (hence one cache line contains eight instructions); hardware next-8
line prefetching is enabled; and the prefetch-scheduling distance is 20 instructions.

Figure 2(a) shows two procedures, main() and foo(), where main() contains five basic blocks
(labeled A through E). Two prefetches have been inserted at the beginning of basic block A: one
targeting block E, and the other targeting procedure foo(). There is no need to insert software
prefetches for blocks B, C or D at A since they will already be handled by next-8-line prefetching.
The prefetch targeting E is inserted in block A rather than in block C in order to guarantee a
prefetching distance of at least 20 instructions. Although there are two possible paths from A to
foo() (i.e. A—>-B—>-D—>foo() and A->C—>D—>-foo()), the compiler inserts only a single prefetch of
foo() in A (rather than inserting one in A and one in B) because (i) A dominates5 both paths, and
(ii) the compiler determines that these prefetched instructions are not likely to be displaced by other
instructions fetched along the path A->B—»D—KfooQ.

Figure 2(b) shows an example of prefetching return addresses. The prefetches in procedures
bar() and foo() get their addresses from the top of the return address stack—i.e. 3204 and 1004,
respectively. Finally, Figure 2(c) shows an example where a prefetch is inserted to prefetch the
target address of the indirect jump at address 8192 before the actual target address is known (i.e.
the value register R has not been determined yet). Hence the prefetch has 8192 as its address
operand to serve as an index into the indirect-target table. Three target addresses are predicted for
this indirect jump, and all of them will be prefetched.

3 Architectural Support
Our prefetching scheme requires new support from the architecture. In this section, we describe
how we extend the instruction set architecture, the impact that these new instructions have on the
pipeline, and the new hardware that we add to the memory system (including the prefetch filter).

3.1 Extensions to the Instruction Set Architecture

Without loss of generality, we assume a base instruction set architecture (ISA) similar to the MIPS
ISA [6]. Within a 32-bit MIPS instruction, the high-order six bits contain the opcode. For the
jump-type instructions which implement static procedure calls, the remaining 26 bits contain the
low-order bits of the target word address. We will use this same instruction format as our starting
point.

There are many ways to encode our new instruction-prefetch instructions, and Figure 3(a) shows
just one of the possibilities. An opcode is designated to identify instruction-prefetch instructions.
In contrast with the standard jump-type instruction format, we assume that 24 bits (bits 2 through
25) contain information for computing the prefetch address(es), bits 1 and 0 indicate one of the
four prefetch types. The prefetch type pf _d stores a single prefetch address in a format similar to a
MIPS jump address. The only difference is that since the lower two bits are ignored, it effectively
encodes a 16-byte-aligned address.6 The pf _c type is a compact format which encodes two target
addresses within the 24-bit field in the form of offsets between the target address lines and the
prefetch instruction line itself (again, a single offset bit represents 16 bytes); each offset is 12 bits
wide. The remaining two types are for prefetching indirect targets — pf _r is for procedure returns,
and pf-i is for general indirect-jump targets. A pf-r prefetch does not require an argument since
it implicitly uses the top of the return address stack as its address. A pf _i prefetch encodes the
word offset between itself and the indirect-jump instruction that it is prefetching. To look up the

5 Node d of a flow graph dominates node n if every path from the initial node of the flow graph to n goes through

6Since most machines have at least 16 byte instruction lines, this is not a limitation.

inst pf address of a 16-byte line 0 0

(a) Adding instruction prefetches to the ISA
prefetch

[—opcode—{• prefetch address(es) -l-tyP6-!

bit positions: 31 26 25 ._ ._. 2 1 0
pf_d type

pf_ctype

pf_rtype

pf_i type

1413
instpf offset A offset B 0 1

instpf don't care 1 0

instpf offset 1 1

(b) Data vs. instruction prefetch pipelines
 Data prefetch pipeline *-|

Fetch Decode Issue Addr.
Calc.

Mem.

Prefetch address known
|-« Instruction prefetch pipeline —*-\

Fetch Decode Handled by Hardware
Instruction Prefetcher

Prefetch address known for pf_d type
(extra time required for other types)

Figure 3: Possible extensions to the ISA and the CPU pipeline for instruction prefetches

prefetch address(es), this offset is added to the current program counter to create an index into the
indirect-target table.

3.2 Impact on the Processor Pipeline

Many recent processors have implemented instructions for data prefetching [2, 9, 14]. With respect
to pipelining, our instruction prefetches differ in two important ways from data prefetches: (i) the
pipeline stage in which the prefetch address is known, and (ii) the computational resources consumed
by the prefetches. Figure 3(b) contrasts the pipeline for data prefetches in the MIPS R10000 [14]
with the pipeline for our instruction prefetches in an equivalent machine. As we see in Figure 3(b),
the prefetch address of a pf _d instruction prefetch (the mostly used type) is known immediately
after the Decode stage (the other types of instruction prefetches would require some additional time),
while the address for a data prefetch is not known until it is computed in the Address Calculate
stage. Hence a pf _d instruction prefetch can be initiated two cycles earlier than a data prefetch. In
addition, since instruction prefetches do not go through the latter three pipeline stages of a data
prefetch (instead they are handled directly by the hardware instruction prefetcher after they are
decoded), they do not contend for processor resources including functional units, the reorder buffer,
register file, etc. In effect, the instruction prefetches are removed from the instruction stream as
soon as they are decoded, thereby having minimal impact on most computational resources.

3.3 Extensions to the Memory Subsystem

Figure 4(a) shows our memory subsystem (only the instruction fetching components are displayed).
The I-prefetcher is responsible for generating prefetch addresses and launching prefetches to the
unified L2 cache for both hardware and software initiated prefetching. Prefetch-address generation
involves simple extraction of prefetch addresses from pf _d prefetches, adding constant offsets to the
current program counter (for next-JV line prefetching and pf_c prefetches), or retrieving prefetch
targets from some hardware structures (for pf_r and pf_i prefetches). The I-prefetcher will not
launch a prefetch to the L2 cache if the line being prefetched is already in the primary instruction
cache (I-cache) or has an outstanding fetch or prefetch for the same line address. The auxiliary
structures shown in Figure 4(a) include the return address stack and the indirect-target table used
by pf _r and pf_i prefetches, respectively. These structures are not necessary if these two types of
prefetches are not implemented.

3.3.1 Prefetch Filtering Mechanism

The prefetch filter sits between the I-prefetcher and the L2 cache to reduce the number of useless
prefetches. In addition, a prefetch bit is associated with each line in the I-cache to remember whether
the line was prefetched but not yet used, and a two-bit saturating counter value is associated with

(a) Memory subsystem

Processor

i auxiliary
! structures

H-prefetcher
I-cache

Prefetch
filter

^

Data-fetching
components
are not shown

Unified L2 cache

Main memory

Addresses & Controls Instructions

(b) Example of prefetch filtering
T Initially, line A was prefetched but has not been used.

Lines A and B map to the same line in the I-cache.

_ _ —I-cache^—- a J
ss1

—L2 cache~

line A
1 0

m linpR £'
HLinc B is prefetched and replaces line A. Line A's saturation

• counter is incremented.

1 lineB
1 1

n 1 line R

mThe processor prefetches line A and then uses line B.
• The prefetch of line A is filtered out because line A's saturation

counter has reached "11". Line B's prefetch bit is reset.

line R
1 1

01

Line A i1- fetched and replace1, line li. Line A\ «..nutation
IV. counter is reset upon the letch. Line B's one is reset because

its prefetch bil is /LTD when il IM replaced.

line A
on
no linfiR

Figure 4: The memory subsystem and an example of the prefetch filtering mechanism.

(a) Prefetch bit of line L

, [Invalid),

IRO/ / \ \IR1

F = Fetch L
P = Prefetch L
IR.v = Replace L in the I-cache

while its prefetch bil is .r
SR = Replace L in the S-cachv

Invalid = I- (iocs not have a
valid lag in the cacriL-.
It \<i not an enuidud state.

(b) Saturation counter of line L
F,IR0

F,P,IR0

F,IR0

P,IR1

Figure 5: The states and transitions of (a) prefetch bits and (b) saturation counters under prefetch
filtering.

each line in the L2 cache to record the number of consecutive times that the line was prefetched
but not used before it was replaced. The prefetch filtering mechanism works as follows. When a
line is fetched from the L2 cache to the I-cache, both the prefetch bit and the saturating counter
value are reset to zero. When a line is prefetched from the L2 cache to the I-cache, its prefetch bit
is set to one and its saturation counter does not change. When a prefetched line is actually used
by a fetch, its prefetch bit is reset to zero. When a prefetched line / in the I-cache is replaced by
another line, then if the prefetch bit of line / is set, its saturation counter is incremented (unless it
has already saturated, of course); otherwise, the counter is reset to zero. When the prefetch filter
receives a prefetch request for line /, it will either respond normally if the counter value is below a
threshold T, or else it will drop the prefetch and send a "prefetch canceled" signal to the processor
if the counter has reached T (in our experiments, T = 3). Figure 4(b) shows an example of how
the prefetch filtering mechanism works, and Figure 5 summarizes the states and transitions of the
prefetch bit and the saturation counter for a particular cache line.

void schedule_prefetches(£) {
foreach basic block B in the executable E do

schedule(B, B, 0, {});
}

// Consider attaching a prefetch for T to B where:
// B = current basic block, T = prefetch-target basic block,
// D = the prefetching distance between B and T
// S = set of basic blocks scheduled so far
// SCHED-DIST = prefetch-scheduling distance
// N = the N used in hardware next-N-line prefetching
void scheduled, T, D, S) {

if (B £ S) { // continue only if B hasn't been scheduled
S - S U {B};
// Attach a prefetch if it is sufficiently early and
// if it is necessary.
if ((D > SCHED-DIST)

and not localityJikely(B, T)
and not nextNline_prefetchable(B, T, N)
and not prefetch_already_exists(B, T)) {

attach.prefetch(S, T);
}
foreach basic block P which can reach B

in a single direct control transfer do {
// update prefetching distance conservatively
D' = D + minJength(f);
schedule(.P, T, D', S);

}

boolean locality Jikely(B, T) {
// If B and T are in the same loop or recursive procedure
// chain that accesses a very small volume of instructions
// relative to the I-cache size, it is likely that T is already
// in the I-cache when we are executing B. In this case,
// we return TRUE; otherwise return FALSE.

}

boolean nextNIine_prefetchable(£, T, N) {
//Determine whether T is within N cache lines of B.

}

boolean prefetch^already_exists(JB, T) {
// Check whether a prefetch for T is already attached to B.

}

void attach_prefetch(B, T) {
// Insert a prefetch of T before the first instruction in B.

}

int min_length(I?) {
// Return the number of instructions executed in basic block
// B. If B doesn't end with a procedure call, this is simply the
// number of instructions in B; otherwise, this is the number
// of instructions in B plus the length of the shortest path
//from the beginning to the end of the procedure called by B.

}

Figure 6: Pseudo-code representation of our prefetch scheduling compiler algorithm.

4 Compiler Support

The compiler is responsible for automatically inserting prefetch instructions into the executable.
Note that since prefetch insertion is most effective if it begins after the code is otherwise in its final
form, this new pass occurs fairly late in the compilation: perhaps at link time, or in our case, we
implemented it as a binary rewrite tool. The goal of the compiler is to schedule prefetches to achieve
high coverage and satisfactory prefetching distances while at the same time minimizing the static
and dynamic instruction overhead. Hence our compiler algorithm has two major phases: prefetch
scheduling and prefetch optimization. Figure 6 shows a pseudo-code representation of our prefetch
scheduling algorithm. After generating an initial prefetch schedule, the compiler then performs
the four optimization passes described below, using the running example in Figure 7. A complete
implementation of this algorithm was used throughout our experiments.

Pass 1: Combining Prefetches at Dominators. This pass boosts prefetches that have been attached
to a basic block 6 in the prefetch scheduling phase to b's nearest dominator (other than b itself)
if the boosting is not harmful (it is harmful when the boosted prefetches will displace other useful
instructions from the cache before b is referenced). After this boosting process, the compiler could
combine some prefetches at dominators. For example, Figure 7(b) shows the result of combining
the two prefetches of line y into one after boosting prefetches from basic blocks D, E, and F into their
dominator C.

Pass 2: Eliminating Unnecessary Prefetches. A prefetch instruction targeting a line / is unneces-
sary if / resides in the I-cache on all possible paths reaching the prefetch instruction. To eliminate
unnecessary prefetch instructions, the compiler estimates which lines reside in the I-cache at each
prefetch instruction using an algorithm similar to the one for computing available expressions in
classical code optimization [1]. In our case, the gen set of a basic block b is the set of lines fetched
or prefetched by b while the kill set is the set of lines displaced by 6. In our example, since line z
will definitely be in the I-cache when we enter basic block C regardless of whether we came from A
or B, the prefetch of line z in C is unnecessary and therefore is eliminated, as shown in Figure 7(c).

1. Combine
prefetches
at dominators

2. Eliminate
unnecessary
prefetches

3. Compress
prefetches

4. Hoist
prefetches

(a) Original schedule Final schedule

Figure 7: Example of prefetch optimization. (A to F are basic blocks; x,
addresses. C is a dominator of D, E, F, and C itself.)

y and z are cache line

Pass 3: Compressing Prefetches. The compiler checks whether multiple pf _d prefetches in the
same basic block can be compressed into a single compact prefetch. For each basic block b, the
compiler needs to compute the offsets between the starting address of b and the target addresses of
all pf _d prefetches scheduled in b. It then attempts to fit these offsets into a minimum number of
compact prefetch instructions. Our example assumes that the address offsets of both lines x and y
are representable within 12 bits, and therefore the two pf _d prefetches in C are compressed into a
single pf_c prefetch, as shown in Figure 7(d).

Pass 4: Hoisting Prefetches. Finally, the compiler hoists prefetches scheduled inside a loop up to
the nearest basic block that dominates but is not part of the loop, if the prefetches do not need
to be re-executed at every iteration (which may not be the case if each iteration can access a large
volume of instructions). In some cases, a pre-header block will be created for the loop to hold the
hoisted prefetches. For example, in Figure 7(e), a pre-header C is created to immediately precede
the header (i.e. C) of the loop containing C, D, E, and F to hold the hoisted pf_c prefetch. While this
optimization does not reduce the code size, it can reduce the number of dynamic prefetches.

5 Experimental Framework

We performed our experiments on seven non-numeric applications which were chosen because their
relatively large instruction footprints result in poor instruction cache performance. These applica-
tions are described Table 2, and all of them were run to completion.

We performed detailed cycle-by-cycle simulations of our applications on a dynamically-scheduled,
superscalar processor similar to the MIPS R10000 [14]. Our simulator models the rich details of the
processor including the pipeline, register renaming, the reorder buffer, branch prediction, branching
penalties, speculative instruction fetching (including incorrect execution paths), the memory hier-
archy (including tag, bank, and bus contention), etc. Table 3 shows the parameters used in our
model for the bulk of our experiments (we vary the latency and bandwidth later in Section 6.6).
As shown in Table 3, we enhanced the memory subsystem in a few ways relative to the R10000 to
provide better support for instruction prefetching—e.g., we added an eight-entry victim cache [4]

10

Table 2: Benchmark characteristics. (Note: the "combined" miss rate is the fraction of instruction
fetches which suffer misses in both the 32KB I-cache and the 1MB L2 cache.)

Name Description Input Data Set
Instructions
Graduated

Miss Rate
I-Cache Combined

Gcc The GNU C compiler
drawn from SPEC92

The stmt.i in the reference input set 136.OM 2.63% 0.10%

Perl The interpreter of the Perl
language drawn from SPEC95

A Perl script called a2ps.pl which
converts ascii to postscript

41.4M 5.03% 0.06%

Porky A SUIF compiler pass for
simplifying and rearranging codes

The compress95.c program in
SPEC95 (default optimizations)

86.8M 2.38% 0.06%

Postgres The PostgreSQL database
management system [15]

A subset of queries in the
Postgres Wisconsin benchmark

46.OM 3.76% 0.16%

Skweel A SUIF compiler pass for
loop parallelization

A program that computes Simplex
(all optimizations)

68.IM 2.22% 0.06%

Tel An interpreter of the script
language Tel version 7.6

Tcltags.tcl which makes Emacs-style
TAGS file for Tel source

37.5M 2.78% 0.02%

Vortex The Vortex object-oriented database
program drawn from SPEC95

A reduced SPEC95 input set 193.OM 6.48% 0.08%

Table 3: Simulation parameters for the baseline architecture.

Pipeline Parameters

Fetch & Decode Width 8 sequential instructions,
on the same cache line

Issue & Graduate Width 4
Functional Units 2 Integer, 2 FP,

2 Memory, 2 Branch
Reorder Buffer Size 32
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction Scheme 2-bit Counters

Memory Parameters

Line Size 32B
I-Cache 32KB, 2-way set-associative, 4 banks
Inst. Prefetch Buffer 16 entries
D-Cache 32KB, 2-way set-associative, 4 banks
Victim Buffers 8 entries each for data and inst.
Miss Handlers (MSHRS) 32 each for data and inst.
Unified S-Cache 1MB, 4-way set-associative
Primary-to-Secondary
Miss Latency

12 cycles (plus any delays
due to contention)

Primary-to-Memory
Miss Latency

75 cycles (plus any delays
due to contention)

Primary-to-Secondary Bandwidth 32 bytes/cycle
Secondary-to-Memory Bandwidth 8 bytes/cycle

and a 16-entry prefetch buffer [3]. Our prefetching buffer is similar to the one used in the Markov
prefetching study [3], with the only difference being that when an entry is forced out of this buffer,
we place it in the instruction cache rather than dropping it. Hence anything that enters the prefetch
buffer eventually enters the instruction cache in our model—its primary purpose is to delay filling
the instruction cache to help avoid cache conflicts.

We compiled each application as a "nonshared" executable with -02 optimization using the
standard MIPS C compilers under IRIX 5.3. We implemented our compiler algorithm as a standalone
pass which reads in the MIPS executable and modifies the binary. However, since we did not have
access to a complete set of binary rewrite utilities, we tightly integrated our compiler pass with
our simulator so that rather than physically generating a new executable, we instead pass a logical
representation of the new binary to the simulator which it can then model accurately. For example,
the simulator fetches and executes all of the new instruction prefetches as though they were in a real
binary, and it remaps all instruction layouts and addresses to correspond to what they would be in
the modified binary. Hence we truly emulate the physical insertion of prefetches at the expense of
decreased simulation speed.

6 Experimental Results

We now present results from our simulation studies. We start by evaluating the performance of our
basic cooperative prefetching scheme (with only direct prefetches), and then evaluate the benefit of
also adding indirect prefetches (i.e. pf _r and pf-i). Next, we examine the relative importance of the

11

?4.6 _ . ga4 Üü g14 93.7 9^ 91A 93.0

N8 C
gcc

M C
perl

N4 C N4 C N4 C
porky postgres skweel

N8 C
tcl

N8 C
vortex

l-Miss Stall
Other Stall
Busy

Figure 8: Performance comparison of our basic cooperative prefetching scheme and the best per-
forming existing schemes of individual applications (Nar = next-z-line prefetching, M = Markov
prefetching, C = cooperative prefetching)

two key components of our scheme: prefetch filtering and software-initiated prefetching. We then
measure the impact of varying the prefetch-scheduling distance used by the compiler, and of our
compiler's prefetch optimizations, on the code size and performance. We also quantify the impact
of varying cache latencies and bandwidths on the performance of our scheme. Finally, we justify
the hardware cost of cooperative prefetching.

6.1 Performance of the Basic Cooperative Prefetching Scheme

Our basic cooperative prefetching scheme includes compiler-inserted pf_d and pf_c prefetches,
hardware-based next-8-line prefetching, and prefetch filtering. No pf_r or pf_i prefetches (and
hence the required hardware structures) are used. A prefetch-scheduling distance of 20 instructions
is used for all applications.

Figure 8 shows the performance impact of cooperative instruction prefetching. For each appli-
cation, we show two cases: the bar on the left is the best previously-existing prefetching scheme
(seen earlier in Figure 1), and the bar on the right is cooperative prefetching (C). As we see in
Figure 8, our cooperative prefetching scheme offers significant speedups over existing schemes (6.4%
on average) by hiding a substantially larger fraction of the original instruction cache miss stall times
(71% on average, as opposed to an average reduction of 36% for the best existing schemes).

To understand the performance results in greater depth, Figure 9 shows a metric which allows
us to evaluate the coverage, timeliness, and usefulness of prefetches all on a single axis. This figure
shows the total I-cache misses (including both fetch and prefetch misses) normalized to the original
case (i.e. without prefetching) and broken down into the following four categories. The bottom
section is the number of fetch misses that were not prefetched (this accounts for 100% of the misses
in the original case, of course). The next section (Late Prefetched Misses) is where a miss has been
prefetched, but the prefetched line has not returned in time to fully hide the miss (in which case
the instruction fetcher stalls until the prefetched line returns, rather than generating a new miss
request). The Prefetched Hits section is the most desirable case, where a prefetch fully hides the
latency of what would normally have been a fetch miss, converting it into a hit. Finally, the top
section is useless prefetches which bring lines into the cache that are not accessed before they are
replaced.

Figure 9 shows that both cooperative prefetching and the best existing prefetching schemes
achieve large coverage factors, as indicated by the small number of unprefetched misses. The main
advantage of our scheme is that it is more effective at launching prefetches early enough. This is
demonstrated in Figure 9 by the significant reduction in late prefetched misses, the bulk of which have
been converted into prefetched hits. We also observe in Figure 9 that both cooperative prefetching

12

623
«-. 600
C. 550
g 500

W 450
s
a>
£ u
(0
U

■

■o
8
"5
E
o z

400

350

300

250

200

150

100

50

0
O N8

gcc

Useless Prefetches
Prefetched Hits

Sj Late Prefetched Misses
I Unprefetched Misses

356
323

O M
perl

O N4 C
postgres

N8
tcl

O N8
vortex

Figure 9: Breakdown of all I-cache misses, normalized to the original case. (O = original, Nx =
next-x-line prefetching, M = Markov prefetching, C = cooperative prefetching).

and existing schemes experience a certain amount of cache pollution since the sum of the bottom
three sections of the bars adds up to over 100%. However, the prefetch filtering mechanism used
by cooperative prefetching helps to reduce this problem, thereby resulting in a smaller total for
the bottom three sections than the best existing scheme in all of our applications. In addition,
Figure 9 shows another benefit of prefetch filtering: it dramatically reduces the number of useless
prefetches. The reduction in total useless prefetches ranges from 2.4 in perl to 10.6 in tcl—on
average, cooperative prefetching has achieved a sixfold reduction in useless prefetching.

6.2 Adding Prefetches for Procedure Returns and Indirect Jumps

Having seen the success of our basic cooperative prefetching scheme, we now evaluate the perfor-
mance benefit of extending it to include the indirect prefetches—i.e. pf _r and pf _i prefetches for
procedure returns and indirect jumps, respectively. Figure 10 shows the performance of five varia-
tions of cooperative prefetching: the basic scheme (C); the basic scheme plus pf_r prefetches (SR);
the basic scheme plus using hardware to prefetch the top three addresses on the stack at each pro-
cedure return (HR); and two cases which include the basic scheme plus pf_i prefetches (SI and
BI). Both schemes SR and HR use a 12-entry return address stack. While scheme HR has no
instruction overhead, scheme SR has a better control over the prefetching distance via compiler
scheduling. Scheme SI uses a 1 KB, 2-way set-associative indirect-target table where entry holds
up to four target address; scheme BI uses a 16 KB, 4-way set-associative indirect-target table with
16 targets per entry.

As we can see in Figure 10, the marginal benefit of supporting indirect prefetches is quite small for
these applications. Part of the limitation is that only a relatively small fraction (roughly 15%) of the
remaining misses which are not handled by our basic scheme are due to either procedure returns or
indirect jumps, and therefore the potential for improvement is small. In addition, since some indirect
jumps can have a fairly large number of possible targets—e.g., more than eight, as we observe in
perl and gcc—prefetching all of these targets could result in cache pollution. Prefetching indirect
jump targets may become more important in applications where they occur more frequently—e.g.,
object-oriented programs that make heavy use of virtual functions, or applications that use shared
libraries. Although two of our applications are written in C++ (porky and skweel), they rarely
use virtual functions. Since our applications show little benefit from pf _r and pf _i prefetches, we
do not use them in the remainder of our experiments.

13

0) 120

E
1- 100

c
o 80
+*
3
Ü 60
O
X
w 40
■o
0)
N 20

a
P U

l-Miss Stall
Other Stall
Busy

8989898989 8787878889 SJ2J919191 8787878787 &&■&& 8888888888 8485848485

C SRHR SI Bl C SRHR SI Bl C SRHR SI Bl C SRHR SI Bl C SRHR SI Bl C SRHR SI Bl C SRHR SI Bl

gcc perl porky postgres skweel tcl vortex

Figure 10: Impact of adding prefetches for procedure returns and indirect jumps (C = basic coop-
erative prefetching, SR = basic plus pf _r prefetches, HR = basic plus using hardware to prefetch
the next three return addresses at each return, SI = basic plus pf _i prefetches with a smaller
indirect-target table, Bl = basic plus pf _i prefetches with a bigger indirect-target table.)

100 95 95
1)
E
F
c
o

ü
8
ill
■o

CD
E

■■ 93 2m 91 93 94
— — 88 ■

| l-Miss Stall
: Other Stall
Busy

N8 N8+f S C N8 N8+f S C N8 NS+f S C NB N8+f S C N8 N8+f S C N8 NB+f S C N8 N8+f S C

gcc perl porky postgres skweel tcl vortex

Figure 11: Performance of four different combinations of prefetch filtering and compiler-inserted
prefetching (N8 = next-8-line prefetching alone, N8+f = next-8-line prefetching with prefetch fil-
tering, S = compiler-inserted prefetching alone without prefetch filtering, C = cooperative prefetch-
ing).

6.3 Importance of Prefetch Filtering and Software Prefetching

Two components of the cooperative prefetching design contribute to its performance advantages:
prefetch filtering and compiler-inserted software prefetching. To isolate the contributions of each
component, Figure 11 shows their performance individually as well as in combination. The relative
importance of prefetch filtering versus compiler-inserted prefetching varies across the applications:
in tcl, prefetching filtering is more important, and in postgres, compiler-inserted prefetching is
more important. In all cases, the best performance is achieved when both techniques are combined,
and in all but one case this results in a significant speedup over either technique alone. Intuitively,
the reason for this is that the benefits of prefetch filtering (i.e. avoiding cache pollution) and soft-
ware prefetching (i.e. issuing non-sequential prefetches early enough) are orthogonal. Hence both
components of our design are clearly important for performance and are complementary in nature.

14

(a) Static prefetch count

25 26

llii Uli liii llii liii llii III!
UDEZ UDEZ UDEZ UDEZ UDEZ UDEZ UDEZ

gcc pari porky postgres skweel tcl vortex

(b) Performance

ä
■a
S 20

■ l-Mlas Stall
m Other Stall
\Y Busy

8289898989 gs8878787 Sä2!ä£! 8787878787 SSäSS jpa7S788aS 8684848484

■ HI HI HI HI
UDEZH

gcc
UDEZH

perl
UDEZH

porky
UDEZH
postgres

UDEZH
skweel

UDEZH
tcl

UDEZH
vortex

Figure 12: Impact of prefetch optimization on (a) the static prefetch count and (b) the performance
of cooperative prefetching. (U = unoptimized, D = combining prefetches at dominators, E = case
D plus eliminating unnecessary prefetches, Z = case E plus compressing prefetches, H = case Z plus
hoisting prefetches.) The y-axis of (a) is normalized to the number of instructions in the original
executable.

a) Static prefetch count (b) Performance

S 20

1216202428 12162024» 1216202428 1216202428 1216202426 1216202426 1216202428

gcc perl porky postgres skweel tcl vortex

■ l-Mlu Stall
m Other Stall
\Y Buay

8989898989 ^^878585 ggl^gll 8888878887 ffi £«0888887 8585848584

1216 20 24 28 1218 20 24 28 1218 20 24 28 1218 20 24 28 1218 20 24 28 1216 20 24 28 1218 20 24 28

gcc perl porky postgres skweel tcl vortex

Figure 13: Impact of the prefetch-scheduling distance on (a) the static prefetch count and (b) the
performance of cooperative prefetching, (xx = a prefetch-scheduling distance of xx instructions is
used in the compiler scheduling; the case 20 is the default for our basic cooperative prefetching.)
The y-axis of (a) is normalized to the number of instructions in the original executable.

6.4 Impact of Prefetching Optimizations

To evaluate the effectiveness of the compiler optimizations in reducing the number of prefetches,
we measured their impact both on code size and performance. Figure 12(a) shows the number
of static prefetches remaining as each optimization pass is applied incrementally, normalized to
the original code size. Without any optimization (U), the code size can be bloated by over 40%.
Combining prefetches at dominators (D) dramatically reduces the prefetch count by more than
a half in all applications except postgres. Eliminating unnecessary prefetches and compressing
prefetches further reduces the prefetch count by a moderate amount. (Prefetch hoisting has no
effect on the static prefetch count, and therefore is not shown in Figure 12(a).) Altogether, the
prefetch optimizations limit the prefetch count to only 9% of the original code size on average.

Figure 12(b) shows the impact of these optimizations on performance. As we see in this figure,
combining prefetches at dominators results in a noticeable performance improvement in several
cases (e.g., gcc, perl, and tcl). The other optimizations have a negligible performance impact. In
fact, prefetch compression and hoisting sometimes degrade performance by a very small amount by
changing the order in which prefetches are launched.

6.5 Varying the Prefetch-Scheduling Distance

A key parameter in our prefetch scheduling compiler algorithm is the prefetch-scheduling distance
(i.e. SCHED-DIST in Figure 6). When choosing a value for this parameter, we must consider
the following tradeoffs: we would like the parameter to be large enough to hide the expected miss

15

—. 120
&
I 100
p
i «

1 -
I"

-* 120

I 100
p
s «
1-
a
I •

(a) Miss latency = 6 cycles

™J|M 1ffij|92 'SmimSl n|
■ l-Mlae Stall

1°°98,>i 100 10199 100 07 |g Othar Stall
■Sä. ■■■ Hai, MB""

rfl 11II III I I ■

(b) Miss latency = 24 cycles

100 100 100 100 1

Mill ■■£

in m III !■■ M ™ TO
»a» »II MM S

0N4C ON4C OWC ON4C ON4C ON4C ON4C
gec perl porky postgres skweel tel vortex

ON4C ON4C OWC ON4C ON4C O NIC ON4C
gec perl porky postgres skweel tel vortex

Figure 14: Impact of varying the cache miss latency. (O = original, N4 = next-4-line prefetching,
C = cooperative prefetching.)

(a) Bandwidth = 16 bytes/cycle

lii ■■" "a~ *-- "l"Ä liS ifis

«SS ■■■ III IIII ■ PI III 111

(b) Bandwidth = infinite
| l-Mlaa SMI
:; Other Stall
(Buay — 89 89 H^ „ HI91 SPP

II 111 ill ill 111 ill 111
N4CC32 N4CC32 N4 CC32 N4CC32 N4 CC32 N4CC32 N4CC32

gec perl porky postgres skweel tel vortex
N4 C C32 N4 C C32 N4 C C32 N4 C C32 N4 C C32

gec perl porky postgres skweel
C C32 N4 C C32

tel vortex

Figure 15: Impact of varying the bandwidth between the I-cache and L2 cache. (N4 = next-4-
line prefetching, C = cooperative prefetching, C32 = cooperative prefetching with the original
bandwidth which is 32 bytes/cycle).

latency, but setting the parameter too high can increase the code size (since more prefetches must be
inserted to cover a larger number of unique incoming paths) and increase the likelihood of polluting
the cache. In our experiments so far, we have used a prefetch-scheduling distance of 20 instructions,
which is roughly equal to the product of the expected IPC (~1.6) and the primary-to-secondary miss
latency (> 12 cycles). To determine the sensitivity of cooperative prefetching to this parameter,
we varied the prefetch-scheduling distance across a range of five values from 12 to 28 instructions,
and measured the resulting impact on both code size and performance (shown in Figures 13(a) and
13(b), respectively).

As we observe in Figure 13(a), increasing the prefetch-scheduling distance can result in a no-
ticeable increase in the code size. Fortunately, even with a prefetch-scheduling distance as large as
28 instructions, the compiler is still able to limit the code expansion to less that 11% on average,
due to the optimizations discussed in the previous section. In contrast, the performance offered
by cooperative prefetching is less sensitive to the prefetch-scheduling distance, as we see in Fig-
ure 13(b). While tel enjoys a 6% speedup as we increase this parameter from 12 to 28 cycles, the
other applications experience no more than a 2% fluctuation in performance across this range of
values. Hence we observe that performance is not overly sensitive to this parameter.

6.6 Impact of Latency and Bandwidth Variations

We now consider the impact of varying miss latencies and available bandwidth between the primary
and secondary caches on the performance of cooperative prefetching. Recall that in our experiments
so far, the primary-to-secondary miss latency has been 12 cycles (plus any delays due to contention).
Figure 14 shows the performance of next-4-line and cooperative prefetching when this parameter
is decreased to 6 cycles and increased to 24 cycles. (Note that the compiler's prefetch-scheduling
distance was set to 12 and 28 instructions, respectively, for the 6-cycle and 24-cycle cases.) As we
see in Figure 14, cooperative prefetching still performs well under both latencies, and results in even
larger improvements as the latency grows. In the 24-cycle case, cooperative prefetching results in an

16

91 Jj| 92 91 91 87 ■88- JlÄJlW
82 82

I l-Miss Stall
88 Other Stall
■ £äj2 88 Busy

C 64K 12SK256K C MK 12IK2HSK C 64K 128K256K C HK 12IK256K C UK 128K256K C «K 1MK256K C 64K 12SK256K

gcc perl porky postgres skweel tcl vortex

Figure 16: Performance comparison of cooperative prefetching and larger I-caches (C = a 32 KB
I-cache with basic cooperative prefetching, xxK = a xx KB I-cache without prefetching.) The y-axis
is normalized to the execution time of a 32 KB I-cache without prefetching.

average speedup of 24.4%, which is double the average speedup of next-4-line prefetching (12.2%).
Turning our attention to bandwidth, recall that our experiments so far have assumed a bandwidth

of 32 bytes/cycle between the primary instruction cache and the secondary cache. Figure 15 shows
the impact of decreasing this bandwidth to 16 bytes/cycle, and increasing it to unlimited bandwidth.
(Note that the C32 case—cooperative prefetching with the original bandwidth of 32 bytes/cycle—
is include on the same axis simply as a point of comparison.) There are two things to note from
Figure 15. First, we see in Figure 15(a) that while reducing the bandwidth does degrade the
performance of cooperative prefetching somewhat—from an average speedup of 13.3% to 12.5%—
the overall performance gain still remains high. Hence cooperative prefetching can achieve good
performance with realistic amounts of bandwidth. (Note that this bandwidth includes servicing
data cache misses as well.) Second, in Figure 15(b) we observe that increasing the bandwidth
beyond 32 bytes/cycle does not significantly improve the performance of cooperative prefetching
(the average speedup only increases from 13.3% to 13.7%). Therefore cooperative prefetching is not
bandwidth-limited, and it is more likely that it is limited by other factors (e.g., cache pollution,
achieving a sufficient prefetching distance, etc.).

6.7 Cost Effectiveness

Having demonstrated the performance advantages of cooperative prefetching, we now focus on
whether the additional hardware support is cost effective. One alternative to cooperative prefetch-
ing would be to simply increase the cache sizes by a comparable amount. (Note that this is overly
simplistic since the primary cache sizes are often limited more by access time than the amount of
silicon area available.) For our baseline architecture, the additional storage necessary to support
basic cooperative prefetching is 640 bytes at the level of the primary I-cache (128 bytes for the
prefetch bits used by prefetch filtering, and 512 bytes for the prefetch buffer), and 8 KB for the 2-bit
saturating counters added to the L2 cache. (We do not count the storage for prefetching indirect
jumps because they are not used in basic cooperative prefetching.)

Figure 16 compares the performance of a 32 KB I-cache with cooperative prefetching with that
of three larger I-caches, ranging from 64 KB to 256 KB, without prefetching. It is encouraging that
the average speedup achieved by cooperative prefetching (13.3%) is greater than that obtained by
doubling the cache size from 32 KB to 64 KB (10.8%) despite of the substantially higher hardware
cost of the larger cache. In addition, cooperative prefetching outperforms the 128 KB I-cache in
three of the seven applications, and is within 2% of the performance with a 256 KB I-cache in five
cases. Overall, cooperative prefetching appears to be a more cost-effective method of improving
performance than simply increasing the I-cache size.

17

7 Conclusions

To overcome the disappointing performance of existing instruction prefetching schemes on modern
microprocessors, we have proposed and evaluated a new prefetching scheme whereby the hard-
ware and software cooperate as follows: the hardware performs aggressive next-iV-line prefetching
combined with a novel prefetch filtering mechanism to get far ahead on sequential accesses without
polluting the cache, and the compiler uses a novel algorithm to insert explicit instruction-prefetch in-
structions into the executable to prefetch non-sequential accesses. Our experimental results demon-
strate that our scheme significantly outperforms existing schemes, eliminating 50% or more of the
latency that had remained with the best existing scheme. This reduction in latency translates into a
13.3% average speedup over the original execution time on a state-of-the-art superscalar processor,
which is more than double the 6.5% speedup achieved by the best existing scheme, and much closer
to the maximum 20% speedup (for these applications and this architecture) in the ideal instruction
prefetching case. These improvements are the result of launching prefetches earlier (thereby hid-
ing more latency), while at the same time reducing the cache-polluting effects of useless prefetches
dramatically. Given these encouraging results, we advocate that future microprocessors provide
instruction-prefetch instructions along with the prefetch filtering mechanism.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and
Tools. Addison Wesley, 1986.

[2] D. Bernstein, D. Cohen, A. Freund, and D. E. Maydan. Compiler techniques for data prefetching
on the PowerPC. In PACT'95, June 1995.

[3] D. Joseph and D. Grunwald. Prefetching using markov predictors. In ISCA '97, June 1997.

[4] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In ISCA '90, pages 364-373, May 1990.

[5] D. Kaeli and P. Emma. Branch history table prediction of moving target branches due to
subroutine returns. In ISCA'91, pages 34-42, May 1991.

[6] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

[7] A. Maynard, C. Donnelly, and B. Olszewski. Contrasting characteristics and cache performance
of technical and multi-user commerical workloads. In ASPLOS-VI, pages 145-156, October
1994.

[8] J. Pierce and T. Mudge. Wrong-path prefetching. In MICRO-29, December 1996.

[9] V. Santhanam, E. Gornish, and W.-C. Hsu. Data prefetching on the HP PA8000. In ISCA'91,
June 1997.

[10] A. Smith. Sequential program prefetching in memory hierarchies. IEEE Computer, 11(2):7—21,
1978.

[11] A. Smith. Cache memories. Computing Surveys, 14(3):473-530, Sept. 1982.

[12] J. Smith and W.-C. Hsu. Prefetching in supercomputer instruction caches. In Supercomput-
ing'92, pages 588-597, 1992.

[13] C. Xia and J. Torrellas. Instruction prefetching of system codes with layout optimized for
reduced cache misses. In ISCA'96, pages 271-282, June 1996.

[14] K. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, April 1996.

[15] A. Yu and J. Chen. The Postgres95 User Manuel vl.O. University of California at Berkeley,
Sept 1996.

18

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

